(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(U11(X)) → U11(proper(X))
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
isNePal(ok(X)) → ok(isNePal(X))
U12(mark(X)) → mark(U12(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
U12(ok(X)) → ok(U12(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6]
transitions:
ok0(0) → 0
active0(0) → 0
nil0() → 0
tt0() → 0
mark0(0) → 0
top0(0) → 1
proper0(0) → 2
isNePal0(0) → 3
U120(0) → 4
__0(0, 0) → 5
U110(0) → 6
active1(0) → 7
top1(7) → 1
nil1() → 8
ok1(8) → 2
tt1() → 9
ok1(9) → 2
isNePal1(0) → 10
ok1(10) → 3
U121(0) → 11
mark1(11) → 4
__1(0, 0) → 12
ok1(12) → 5
__1(0, 0) → 13
mark1(13) → 5
U121(0) → 14
ok1(14) → 4
U111(0) → 15
mark1(15) → 6
U111(0) → 16
ok1(16) → 6
isNePal1(0) → 17
mark1(17) → 3
proper1(0) → 18
top1(18) → 1
ok1(8) → 18
ok1(9) → 18
ok1(10) → 10
ok1(10) → 17
mark1(11) → 11
mark1(11) → 14
ok1(12) → 12
ok1(12) → 13
mark1(13) → 12
mark1(13) → 13
ok1(14) → 11
ok1(14) → 14
mark1(15) → 15
mark1(15) → 16
ok1(16) → 15
ok1(16) → 16
mark1(17) → 10
mark1(17) → 17
active2(8) → 19
top2(19) → 1
active2(9) → 19

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
isNePal(ok(z0)) → ok(isNePal(z0))
isNePal(mark(z0)) → mark(isNePal(z0))
U12(mark(z0)) → mark(U12(z0))
U12(ok(z0)) → ok(U12(z0))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
U11(mark(z0)) → mark(U11(z0))
U11(ok(z0)) → ok(U11(z0))
Tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(nil) → c2
PROPER(tt) → c3
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
S tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(nil) → c2
PROPER(tt) → c3
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
K tuples:none
Defined Rule Symbols:

top, proper, isNePal, U12, __, U11

Defined Pair Symbols:

TOP, PROPER, ISNEPAL, U12', __', U11'

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing nodes:

TOP(ok(z0)) → c(TOP(active(z0)))
PROPER(nil) → c2
PROPER(tt) → c3

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
isNePal(ok(z0)) → ok(isNePal(z0))
isNePal(mark(z0)) → mark(isNePal(z0))
U12(mark(z0)) → mark(U12(z0))
U12(ok(z0)) → ok(U12(z0))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
U11(mark(z0)) → mark(U11(z0))
U11(ok(z0)) → ok(U11(z0))
Tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
S tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
K tuples:none
Defined Rule Symbols:

top, proper, isNePal, U12, __, U11

Defined Pair Symbols:

TOP, ISNEPAL, U12', __', U11'

Compound Symbols:

c1, c4, c5, c6, c7, c8, c9, c10, c11, c12

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
isNePal(ok(z0)) → ok(isNePal(z0))
isNePal(mark(z0)) → mark(isNePal(z0))
U12(mark(z0)) → mark(U12(z0))
U12(ok(z0)) → ok(U12(z0))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
U11(mark(z0)) → mark(U11(z0))
U11(ok(z0)) → ok(U11(z0))
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

top, proper, isNePal, U12, __, U11

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
isNePal(mark(z0)) → mark(isNePal(z0))
U12(mark(z0)) → mark(U12(z0))
U12(ok(z0)) → ok(U12(z0))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
U11(mark(z0)) → mark(U11(z0))
U11(ok(z0)) → ok(U11(z0))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c1(TOP(proper(z0)))
We considered the (Usable) Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
And the Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ISNEPAL(x1)) = 0   
POL(TOP(x1)) = x1   
POL(U11'(x1)) = 0   
POL(U12'(x1)) = 0   
POL(__'(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1]   
POL(nil) = 0   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   
POL(tt) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
We considered the (Usable) Rules:none
And the Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ISNEPAL(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U11'(x1)) = x1   
POL(U12'(x1)) = x1   
POL(__'(x1, x2)) = x2   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(nil) = 0   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

__'(mark(z0), z1) → c9(__'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ISNEPAL(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U11'(x1)) = 0   
POL(U12'(x1)) = 0   
POL(__'(x1, x2)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(nil) = [1]   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = [1] + x1   
POL(tt) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
We considered the (Usable) Rules:none
And the Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ISNEPAL(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U11'(x1)) = 0   
POL(U12'(x1)) = 0   
POL(__'(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = [2] + x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
We considered the (Usable) Rules:none
And the Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ISNEPAL(x1)) = [2]x1   
POL(TOP(x1)) = 0   
POL(U11'(x1)) = 0   
POL(U12'(x1)) = 0   
POL(__'(x1, x2)) = [3]x1 + [2]x2   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [2] + x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(nil) → ok(nil)
proper(tt) → ok(tt)
Tuples:

ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:none
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
U12'(mark(z0)) → c6(U12'(z0))
U12'(ok(z0)) → c7(U12'(z0))
__'(ok(z0), ok(z1)) → c8(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
U11'(mark(z0)) → c11(U11'(z0))
U11'(ok(z0)) → c12(U11'(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
ISNEPAL(ok(z0)) → c4(ISNEPAL(z0))
ISNEPAL(mark(z0)) → c5(ISNEPAL(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

ISNEPAL, U12', __', U11', TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c1

(23) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(24) BOUNDS(1, 1)